

SISTEMI GEOTERMICI PIU' SEMPLICI, EFFICIENTI ED A BASSO COSTO PER IL RETROFIT DI EDIFICI CIVILI E STORICI

2018 - 2023

Manuale d'uso App per il supporto sul campo per gli operatori del settore geotermico

Autori: Consorzio GEO4CIVHIC Coordinatore del progetto: Adriana BERNARDI Coordinatrici del manuale: Silvia CONTINI & Giulia MEZZASALMA

www.geo4civhic.eu

Il progetto GEO4CIVHIC è stato finanziato dal programma di ricerca e innovazione Horizon 2020 dell'Unione Europea con l'accordo di sovvenzione n. 792355.

Qualsiasi divulgazione dei risultati deve indicare che questi riguardano solo l'opinione degli autori e che l'Agenzia non è responsabile dell'uso che può essere fatto delle informazioni contenute.

EDITORI: Adriana Bernardi Doinița - Iuliana Cucuețeanu

CONTENUTI

AUTORI / PARTNER	3
1. INTRODUZIONE	4
2. DISCLAIMER	5
3. SCHERMATA INIZIALE - INTERFACCIA UTENTE	6
4. MENU' DI SERVIZIO	7
5. DATI DI INGRESSO	9
5.1. Localizzazione	9
5.2. Terreno	11
5.3. Edificio	13
6. DATI DI USCITA	15
7. PULSANTE INFO	17
8. CONCLUSIONI	18

FIGURE

Figura 1. Sezioni dell'app	4
Figura 2. Dichiarazione di responsabilità	5
Figura 3. Interfaccia utente e menu	6
Figura 4. Menu di servizio	7
Figura 5. Menu Apri progetto	8
Figura 6. Pulsante di localizzazione	9
Figura 7. Riquadro dei gradi giorno	10
Figura 8. Pulsante di terra	11
Figura 9. Sezioni di ambiente, sottoambiente e litologia	12
Figura 10. Pulsante di costruzione	13
Figura 11. Pulsante Risultati	15
Figura 12. Pulsante Info	17

TABELLE

Tabella 1. Tipo di edifici residenziali	13
Tabella 2. Tipo di edifici non residenziali	14

AUTORI / PARTNER

RED - Silvia CONTINI, Giulia MEZZASALMA, Luc POCKELÉ, Mattia CHINELLO, Nicola MUTINELLI UNPD-DG - Antonio GALGARO, Eloisa DI SIPIO, Giorgia DALLA SANTA, Alberto CARRERA TECNALIA - Amaia CASTELRUIZ GEOSERV - Riccardo PASQUALI

1. INTRODUZIONE

L'applicazione mobile *Drillability*, creata nell'ambito del progetto GEO4CIVHIC, ha lo scopo di aiutare perforatori, tecnici e progettisti a velocizzare e facilitare le analisi preliminari di pre-fattibilità degli impianti geotermici (valutazione preliminare dei costi e dei relativi benefici energetici).

Essa può essere utilizzata in dispositivi smartphone o tablet ed è scaricabile gratuitamente dagli store Android e iOS.

La logica operativa dell'applicazione prevede le seguenti fasi:

- localizzazione del sito che si vuole studiare,
- associazione alle caratteristiche litologiche e termofisiche del sottosuolo
- definizione della struttura dell'edificio,
- stima della fattibilità e della migliore tecnica di perforazione.

L'App Drillability presenta tre sezioni di input:

- 1. Geolocalizzazione
- 2. Geologia
- 3. Edificio

e ha una sezione di output in cui viene presentato il campo geotermico stimato.

Figura 1. Sezioni dell'app

2. DISCLAIMER

Quando si apre l'applicazione sul proprio dispositivo mobile, l'App Drillability si presenta con lo splash del logo GEO4CIVHIC; poi appare il disclaimer. Il disclaimer sottolinea che i risultati dell'App forniscono solo una stima preliminare e non di dettaglio della fattibilità geologica nella realizzazione di sistemi geotermici a bassa profondità.

Figura 2. Dichiarazione di non responsabilità

È essenziale che l'utente legga attentamente e accetti il suddetto disclaimer, che specifica le limitazioni d'uso dell'App.

3. SCHERMATA INIZIALE - INTERFACCIA UTENTE

Figura 3. Interfaccia utente e menu

MENU DI SERVIZIO: apre un menu a discesa che consente all'utente di gestire i progetti.

FINESTRA INPUT-OUTPUT: è l'area di lavoro dove l'utente inserisce i dati necessari per il calcolo e dove l'applicazione mostra i risultati dopo l'analisi.

BARRA DEI PULSANTI: sono disponibili cinque pulsanti. Il primo, *Home*, mostra un breve disclaimer; i tre pulsanti successivi, *Localizzazione*, *Terreno*, *Edificio*, consentono l'immissione di dati da parte dell'utente, mentre l'ultimo, *Risultati*, avvia il calcolo e mostra i risultati.

4. MENU' DI SERVIZIO

Figura 4. Menu di servizio

Il menu di servizio consente agli utenti di gestire i progetti sviluppati dall'App Drillability.

Un progetto è definito come una sessione di lavoro che va dalla geolocalizzazione alla produzione di risultati nella schermata Risultati.

Troviamo cinque voci di menu:

- Nuovo progetto
- Apri progetto
- Salva il progetto
- Cancella il progetto
- Esportazione del progetto

Figura 5. Menu Apri progetto

Nuovo progetto: scegliendo questa opzione, si imposta un nuovo progetto. Il lavoro in corso verrà azzerato cancellando il valore di tutte le variabili. Questa opzione è utile se si desidera cancellare i dati parzialmente inseriti e avviare un nuovo progetto.

Apri progetto: questa opzione consente di aprire un progetto salvato nel database dell'applicazione.

L'applicazione mostra l'elenco dei progetti salvati nel database e l'utente può selezionarne uno (vedi figura 5).

Il progetto selezionato viene quindi caricato dall'App e i campi di input delle varie sezioni vengono precompilati con i dati del progetto.

A questo punto, sarà possibile eseguire il calcolo e generare la pagina di output oppure modificare i dati inseriti nelle sezioni Localizzazione, Terreno ed Edificio.

Questa opzione è utile anche se si intende creare un progetto simile a uno esistente, modificando, per esempio, solo i dati dell'edificio.

Salva progetto: un progetto creato da zero o modificato può essere salvato utilizzando questa opzione. L'utente deve scegliere un nome univoco che identifichi il progetto.

Elimina progetto: utilizzando questa opzione, un progetto viene eliminato dal database della App e non sarà più disponibile in futuro.

Esportazione del progetto: i dati del progetto, cioè gli input dell'utente e i risultati dei calcoli, vengono riassunti in un documento PDF che viene salvato sul dispositivo (smartphone o tablet) da cui può essere facilmente condiviso via email.

5. DATI DI INGRESSO

5.1. Localizzazione

Figura 6. Pulsante di localizzazione

Geolocalizzazione automatica

Quando l'utente preme il pulsante Localizzazione, l'applicazione cerca di geolocalizzare l'utente utilizzando il servizio Google Maps; se la procedura va a buon fine, la mappa di Google appare con evidenziato il punto in cui l'utente è stato geolocalizzato (come mostrato in figura 6).

Saranno visualizzate anche le coordinate di latitudine e longitudine e l'indirizzo del sito.

Geolocalizzazione manuale

Se il servizio Google Maps non è disponibile o se l'App viene utilizzata per simulare un sito remoto, è possibile inserire manualmente le coordinate di latitudine e longitudine negli appositi campi, consentendo al software di determinare la zona climatica del sito. L'App esegue i calcoli solo se le coordinate geografiche del sito considerato sono definite.

Quando i valori di latitudine e longitudine sono stati inseriti (automaticamente da Google o manualmente dall'utente) negli appositi campi, sarà possibile premere il pulsante OK!

Inserimento dei gradi giorno¹ : una volta premuto il pulsante Go! l'utente può inserire manualmente i valori dei gradi giorno della località, se questi sono noti. Questo valore consentirà all'App di stimare il fabbisogno energetico dell'edificio con maggiore precisione. L'utente può anche accettare i valori proposti (predefiniti) definiti dall'App che rappresentano un valore medio per la zona climatica corrispondente alle coordinate inserite.

lliad _ til 奈 (5) 								
Drillability 1.0.33								
Accept or change this value:								
	1504							
					ок	c		
		Św.		1			1	
	÷.,							
-	-		-					
-			-	1				
				7				
#	€	&	_	-	1	2	3	?
@	()	=	+	4	5	6	!
{&=	•	:	%	/	7	8	9	\propto
abc	"	-	_	*	,	0		¢

Figura 7. Riquadro del giorno dei gradi

¹ Il **grado giorno** (DD) di una località è la somma estesa a tutti i giorni, in un periodo di riscaldamento annuale convenzionale, delle differenze positive giornaliere tra la temperatura, convenzionalmente fissata per ogni Paese, e la temperatura esterna media giornaliera.

Ad esempio, per i Comuni italiani, si veda http://italia.indettaglio.it/ita/gradi_giorno/gradi_giorno.html.

5.2. Terreno

Il pulsante *Terreno* consente all'utente di definire il tipo di terreno definendo tre sottocategorie basate sulla geolocalizzazione inserita: *Ambiente, Sottoambiente* e *Litologia*. La scelta di queste tre sezioni consente di determinare la conducibilità termica del terreno, nonché il metodo di perforazione, i tempi e i costi. Per la litologia, è possibile scegliere *Sconosciuto*, in modo che l'App stabilisca una conduttività termica semplificata se l'utente non conosce le caratteristiche del terreno.

Geo	illability 1.0.33 othermal tool	3
	Environmen	t
Please, se	elect an environmen	t type.
Coastal ar	ea	*
-	Sub-environm	ent
Please, sp	becify the sub-enviro	onment.
Shoreline		-
19 A	Lithology	
Please, se The app v of about 7 homogen	elect the main litholo vill consider a simpl 100 m depth, charac ous material in satu	ogy. ified stratigraphy terized by a rated conditions.
Sand		~
100	Sec. 1	States and a second
↑	♀ 😚 Ground	î î
	\triangleleft \bigcirc	

Figura 8. Pulsante terreno

Drillability 1.0.33 Drillability 1.0.33 Drillability 1.0.33 : : : Geothermal tool Geothermal tool Geothermal tool Environment Environment Environment Please, select an environment type Please, select an environment type Please, select an environment type oastal area oastal area -Select item-Alluvial plain Sub-environment Sub-environment Mountain-hill area Please, specify the sub-environment. Please, specify the sub-environment Coastal area horeline -Select item-Rocky coast Lithology Please, select the main lithology. The app will consider a simplified stratigraphy of about 100 m depth, characterized by a homogenous material in saturated conditions. Shoreline and Ground Ground Ground Q 血 ê Q 血 â Q 血 ê A A

Sono previste tre fasi, come illustrato nella Figura 9:

Figura 9. Sezioni di ambiente, sotto-ambiente e litologia

- 1. L'utente sceglie un tipo di ambiente tra i tre disponibili. Una volta effettuata la scelta dell'ambiente, apparirà l'elenco dei sotto-ambienti associati.
- 2. L'utente sceglie uno dei sotto-ambienti proposti: appare l'elenco delle litologie associate alle scelte precedenti.
- 3. L'utente seleziona una litologia, completando così la definizione del terreno. Se l'utente non ha idea della litologia da scegliere, è possibile selezionare l'opzione "sconosciuto" e il software sceglierà una conduttività termica media basata sulle due scelte precedenti (ambiente e sotto-ambiente).

5.3. Edificio

Le informazioni sul tipo e sulle dimensioni dell'edificio sono necessarie per stimare il suo fabbisogno termico per il raffreddamento e il riscaldamento e calcolare il campo di trivellazione più appropriato.

Figura 10. Pulsante edificio

La prima scelta che l'utente deve fare è tra edifici residenziali e non residenziali.

Residenziale: questa scelta genera un elenco di 4 tipi di edifici residenziali (**RB**). La tabella seguente mostra i loro parametri

Tabella 1	1.	Tipo	di	edifici	residenziali
-----------	----	------	----	---------	--------------

	RB1	RB2	RB3	RB4
Vista esterna				
Rapporto S/V	0.86	0.40	0.35	0.43
Area netta (m) ²	210	126	1330	681
% superficie vetrata	14%	12%	25%	14%
Numero di piani	2	4	6	6
Numero appartamenti	1	1	20	10
Struttura urbana	isolato	contiguo	condominio	condominio

Non residenziale: questa scelta genera un elenco di 5 tipi di edifici non residenziali (NRB). La tabella seguente ne illustra le caratteristiche e le informazioni generali.

	NRB1	NRB2	NRB3	NRB4	NRB5
Vista esterna					
Rapporto S/V	0.5	0.5	0.33	0.37	0.26
Volume netto (m) ³	5700	5700	3951	3366	5713
% superficie vetrata	85%	50%	49%	45%	35%
Numero di piani	5	5	4	2	2
No. persone	100	100	454	201	50
Uso dell'edificio	Edificio amministrativo	Edificio amministrativo	Edificio amministrativo	Centro diurno	Edificio per uffici

Tabella 2. Tipo di edifici non residenziali

Superficie netta del pavimento / Volume netto di costruzione

Se l'utente seleziona un edificio residenziale (RB), è necessario inserire la superficie netta totale (m).²

Se l'utente seleziona un edificio non residenziale (NRB), è necessario inserire il volume netto dell'edificio (m³).

Livello di isolamento

Se l'utente seleziona un edificio residenziale (**RB**), viene mostrata la possibilità di scegliere tra tre livelli di isolamento delle pareti esterne:

- NI Nessun isolamento Costruito prima del 1990
- LI Basso isolamento Costruito tra il 1990 e il 2005
- GI Buon isolamento Costruito dopo il 2005

Se l'utente seleziona un edificio non residenziale (NRB), il software prenderà in considerazione solo l'opzione Buon Isolamento (GI).

6. DATI DI USCITA

Una volta completate tutte le sezioni di input relative **alla localizzazione**, al **terreno** e all'**edificio**, la procedura di calcolo viene avviata e produce la pagina di output mostrata di seguito premendo il pulsante Risultati.

Se si preme il pulsante Risultati senza aver completato le tre sezioni precedenti, il software visualizza un messaggio che chiede all'utente di completare le sezioni di immissione.

lliad 📶 🛜 9+	©∦⊙58% 💷 18:43				
Drillability 1.0.33 Geothermal tool					
Gro	und				
Environment	Coastal area				
Sub-environment	Shoreline				
Thermal conductivity	2.4 W/m°K				
Drilling method	ED w/o c i				
Borehole hea	at exchanger				
Required total length [m]	204 m				
Probes	3 x 68 m				
Overall drilling time [hours]	14 - 21 hours				
Overall drilling costs [€]	5630 - 8445 € i				
n 9 🏟	Results				

Figura 11. Pulsante Risultati

La schermata di output è divisa in due aree: l'area superiore, denominata **Terreno**, mostra le scelte fatte dall'utente in merito al terreno e il valore di conducibilità termica stimato, insieme alla stima del metodo di perforazione più adatto.

L'area inferiore, denominata Scambiatore di calore in pozzo perforato, mostra i risultati del calcolo, che comprendono:

- La lunghezza totale del campo delle sonde.
- Il numero di sonde fornite e la loro lunghezza.
- Una stima approssimativa del tempo necessario per le operazioni di perforazione.
- Una stima approssimativa dei costi associati alle operazioni di perforazione.

Nota 1:

Utilizzando il pulsante **'info'** situato a destra del **metodo di perforazione** è possibile avere una breve descrizione del metodo di perforazione suggerito dal software.

Utilizzando il pulsante **'info'** situato a destra dei **Costi complessivi di perforazione**, l'utente leggerà questa frase, che giustifica la presenza di un intervallo di valori: "I costi del sistema geotermico possono variare in base allo spazio disponibile e alle caratteristiche dell'impianto".

Nota 2:

La lunghezza massima della singola sonda considerata nella soluzione dell'App è di 100 metri.

Il numero massimo di sonde calcolate dall'App in ciascun progetto è n = 16.

La lunghezza totale massima possibile delle sonde per il campo geotermico è quindi di 1600 metri.

Se il fabbisogno energetico richiede un collettore geotermico più grande, il software indicherà che il campo calcolato copre solo una percentuale del fabbisogno energetico.

In questo caso, sarà necessario utilizzare altri software e strumenti di progettazione dedicati per dimensionare il campo delle sonde di scambio termico a terreno.

7. PULSANTE INFO

Dove si è ritenuto necessario, sono stati inseriti dei pulsanti Info per aiutare nell'utilizzo dell'App o comunicare il verificarsi di particolari situazioni.

L'esempio seguente mostra le informazioni associate al pulsante indicato dalla freccia: vengono descritte le caratteristiche di un particolare metodo di perforazione.

iliad "II 🔶 9+	ՙ♥ 🕈 🛛 58% 🔍 18:43	llia	id , il 🔶 💽	K Ø	\$	
Geothermal too	.0.33 :	4	Easy drill pili	ng without	t casing	:
RES	ULTS		This technique directly with a	e consists ir stainless st	n drilling teel pipe	
Environment	Coastal area		rods and as ex coaxial ground	ternal tube heat excha	of a anger.	
Sub-environment	Shoreline	S S	heat exchange external stainl	er is built wit ess steel pip	th an pe, to and	
Thermal conductivity	2.4 W/m°K		enhance the th the surroundir internal plastic	iermal exch ig ground, a c HDPE or P	ange with nd an EXa pipe.	
Drilling method	ED w/o c i		In addition, the combines rota with the use of	e drilling ma ition and vib f water injec	chine pration ction at the	
Borehole he	at exchanger		bottom of the operation, than head and drilli	well during t tks to a vibr ng system r	the piling o-rotary nade on	
Required total length [m]	204 m		purpose. This technique in unconsolida	e can be app ated materia	olied Ils and	
Probes	3 x 68 m	F	with diameters more at depth	of 76 mm and 100 m ar	and even nd even	
Overall drilling time [hours]	14 - 21 hours	C	case, the wate with a mean fl The drilling op	r supply is r owrate of 30 erations are	needed) lt/min. e very fast	
Overall drilling costs [€]	5630-8445€ i		and, in addition the external pr	n, the install obe is comp	lation of pletely	
n 9 🎲	Results		_		OK Result	.5
\triangleleft			\triangleleft	0		

Figura 12. Pulsante Info

8. CONCLUSIONI

Questa applicazione vuole fornire uno strumento semplice e facile da usare. Tutte le informazioni necessarie per sviluppare i calcoli sono memorizzate in un database all'interno dell'App.

La connessione a Internet è necessaria solo per la geolocalizzazione, ma l'app consente anche la geolocalizzazione manuale.

Le principali limitazioni dell'App risiedono nella determinazione della stratigrafia locale e delle conseguenti proprietà termiche del sottosuolo, che si basano inizialmente sulla sola osservazione visiva dell'ambiente del sito considerato da parte dell'utente. La determinazione del fabbisogno energetico dell'edificio si basa su una stima dei gradi-giorno (DD) legati alle macroclassi climatiche e alla tipologia di edificio. I dati DD possono anche essere inseriti manualmente, consentendo una migliore correlazione con il fabbisogno energetico. L'ultima approssimazione è legata alla scelta automatica da parte dell'App della taglia della pompa di calore.

Tuttavia, l'App fornisce un'indicazione ragionevole del tipo di perforazione, dei relativi costi e tempi e delle dimensioni approssimative del campo di scambio termico a terreno (sonde geotermiche verticali).

_

AUTORI

1. CONSIGLIO NAZIONALE DELLE RICERCHE (CNR)

CNR - ISAC Adriana BERNARDI Alessandro BORTOLIN Gianluca CADELANO

CNR - ITC Sergio BOBBO Laura FEDELE

Stefano ROSSI Mauro SCATTOLINI

2. UNIVERSITÀ DEGLI STUDI DI PADOVA (UNIPD)

Dipartimento di Ingegneria Industriale

Michele DE CARLI Angelo ZARRELLA Giuseppe EMMI Laura CARNIELETTO Samantha GRACI Davide QUAGGIOTTO

Dipartimento di Geoscienze Unità DG

Antonio GALGARO Eloisa DI SIPIO Giorgia DALLA SANTA Alberto CARRERA

3 UNIVERSITÀ POLITECNICA DI VALENCIA (UPV)

Javier F. URCHUEGUÍA Borja BADENES Hossein JAVADI Miguel Á. MATEO

4. R.E.D. SRL RICERCA E DISPOSITIVI AMBIENTALI (RED)

Luc POCKELÉ Giulia MEZZASALMA Silvia CONTINI Mattia CHINELLO Nicola MUTINELLI

5. TERRA GEOSERV LIMITED (GEOSERV)

Riccardo PASQUALI Aisling CUNNINGHAM

6. GALLETTI BELGIO / HIREF (GALLETTI)

Fabio POLETTO Andrea TARABOTTI Enrico PACCHIN

7. FUNDACION TECNALIA RICERCA E INNOVAZIONE (TECNALIA)

Miguel Ángel ANTÓN Amaia CASTELRUIZ Sarah NOYÉ Beatriz SÁNCHEZ Arantza LÓPEZ

8. TERRA INFRASTRUCTURE (EX THYSSENKRUPP INFRASTRUCTURE)

Arno ROMANOWSKI Franziska HELBIG

9. UFFICIO REGIONALE DELL'UNESCO PER LA SCIENZA E LA CULTURA IN EUROPA

Jonathan BAKER Francesca BAMPA Matteo ROSATI Iuliia KOZLOVA Francesco LIPPARINI Anh Thi Ngoc NGUYEN Akémi LAMARCHE VADEL

10. FRIEDRICH-ALEXANDERUNIVERSITAET ERLANGEN NUERNBERG (FAU)

David BERTERMANN Oliver SUFT Moritz FAUDE Johannes MULLER

11. SOCIETATEA ROMANA GEOEXCHANGE / SOCIETÀ ROMENA DI GEOSCAMBIO (SRG - RGS)

Robert GAVRILIUC Doinița- Iuliana CUCUEȚEANU Tiberiu CATALINA Marian ALEXANDRU

12. CENTRO PER LE FONTI ENERGETICHE RINNOVABILI E LA FONDAZIONE PER IL RISPARMIO ENERGETICO (CRES)

Dimitrios MENDRINOS Costantino KARYTSAS Ioannis CHOROPANITIS Ioannis CHALDEZOS Spyridon KARYTSAS

13. HYDRA SRL (HYDRA)

Davide RIGHINI Elisabetta GARDENGHI

14. UBEG DR ERICH MANDS U MARC SAUER GBR (UBEG)

Burkhard SANNER Erich MANDS Marc SAUER

15. GEO-GREEN SPRL (GEO-GREEN)

Jacques VERCRUYSSE

16. PIETRE EDIL SRL (PIETRE)

Elena Loredana FODOR Leonardo ROSSI Alexandru TĂNASE

17. SOLINTEL M&P SL (SOLINTEL)

Dery TORRES Hugo GRASSET Miguel Angel GOMEZ

18. DIN L-ART HELWA (DLH)

Luciano MULE'STAGNO Daniel MICALLEF Ingrid GALEA Davide POLETTO Daniele SFERRA Manuel SCARPA

19. SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA ITALIANA (SUPSI)

Marco BELLIARDI Linda SOMA Sebastian PERA Rodolfo PEREGO

PARTNER

INSTITUTE OF ATMOSPHERIC SCIENCES AND CLIMATE NATIONAL RESEARCH COUNCIL (CNR - ISAC) www.isac.cnr.it

INSTITUTE OF CONSTRUCTION UNIVERSITA' DEGLI **TECHNOLOGIES NATIONAL** STUDI DI PADOVA (UNIPD) **RESEARCH COUNCIL (CNR-ITC)** www.itc.cnr.it

www.unipd.it

UNIVERSITAT POLITECNICA **DE VALENCIA (UPV)** www.upv.es

RESEARCH AND ENVIRONMENTAL DEVICES SRL (RED) www.red-srl.com

TERRA INFRASTRUCTURE (FORMER THYSSENKRUPP INFRASTRUCTURE) www.terra-infrastructure.com

TERRA GEOSERV LIMITED (GEOSERV) www.geoservsolutions.com

GALLETTI BELGIUM/ HIREF (GALLETTI) www.galletti.be/hiref.it

FUNDACION TECNALIA **RESEARCH & INNOVATION** www.tecnalia.com

GEO GREEN SPRL (GEO-GREEN) www.geo-green.be

CENTRE FOR RENEWABLE **ENERGY SOURCES** AND SAVING FUNDATION (CRES) www.cres.gr

PIETRE EDIL SRL (PIETRE EDIL) www.pietre-edil.ro

UNESCO REGIONAL BUREAU FOR SCIENCE AND CULTURE IN EUROPE

www.unesco.org/venice

HYDRA SRL (HYDRA) www.hydrahammer.it

SOLINTEL M&P SL (SOLINTEL) www.solintel.eu

Friedrich-Alexander-Universität Erlangen-Nürnberg

FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN NURNBERG (FAU) www.uni-erlangen.de

UBEG DR ERICH MANDS U MARC SAUER GBR (UBEG) www.ubeg.de

GE��EXCHANGE ROMANIAN GEOEXCHANGE SOCIETY

SOCIETATEA ROMANA GEOEXCHANGE /ROMANIAN GEOEXCHANGE SOCIETY (SRG - RGS) www.geoexchange.ro

> Scuola universitaria professionale della Svizzera italiana

SUPSI

SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA ITALIANA (SUPSI) www.supsi.ch

DIN L-ART HELWA (DLH) www.dinlarthelwa.org

